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a b s t r a c t

The use of Pontryagin’s maximum principle to solve spacecraft motion control problems is demonstrated.
The problem of the optimal control of the spatial reorientation of a spacecraft (as a rigid body) from an
arbitrary initial angular position to an assigned final angular position in the minimum rotation time is
investigated in detail. The case in which velocity parameters of the motion are constrained is considered.
An analytical solution of the problem is obtained in closed form using the method of quaternions, and
mathematical expressions for synthesizing the optimal control programme are given. The kinematic prob-
lem of spacecraft reorientation is solved completely. A design scheme for solving the maximum principle
boundary-value problem for arbitrary turning conditions and inertial characteristics of the spacecraft is
given. A solution of the problem of the optimal control of spatial reorientation for a dynamically sym-
metrical spacecraft is presented in analytical form (to expressions in elementary functions). The results
of mathematical modelling of the motion of a spacecraft under optimal control, which confirm the prac-
tical feasibility of the control algorithm developed, are given. Estimates have shown that the turn time of
modern spacecraft with a constrained magnitude of the angular momentum can be reduced by 15–25%
compared with conventional reorientation methods. The greatest effect is achieved for turns through
large angles (90◦ or more) when the final rotation vector is equidistant from the longitudinal axis and the
transverse plane of the spacecraft.

© 2009 Elsevier Ltd. All rights reserved.

The problem of the optimal control of the angular position of a rigid body has been investigated in various formulations in many
publications.1–8 In particular, the kinematic problem of turning has been investigated in detail,1 and a solution was presented for the
version in which the magnitude of the angular velocity vector is constrained. Questions of the optimal turning of a spacecraft for maximum
speed and minimum energy consumption have been considered,2 and an analytical solution has been obtained using Pontryagin’s maximum
principle for the case in which the region of admissible values of the control moment is confined to a sphere, and the spacecraft itself turns
about the final rotation vector. Control by a combined synthesis method based on a generalized work criterion has been devised.3 Although
analytical design based on a generalized work criterion does not require significant simplification of the model of the control object,
optimization by this method does not enable the constraints on the control variables to be satisfied. In addition, the method is applicable
only when the initial angular deviations are relatively small.4 The unsuitability of analytical design with respect to a generalized work
criterion for the case of arbitrary initial angular deviations (including deviations up to 180◦) is a serious deficiency of this method. The use
of predicting models to synthesise the controls improves the alignment quality, and they are, therefore, currently widely employed. However,
in such algorithms the final result largely depends on the form of the predicting model; the latter completely predetermines the type of
turn realized by the controls obtained. Adopting a predicting model that is as close as possible to reality entails unavoidable mathematical
complications. For the most part, optimization methods employing predicting models are used to synthesize controls that stabilize the
programmed motion of a spacecraft and to design high-precision compensations.5,6 The possibility of finding similar programmed controls
has not been thoroughly investigated. The solution obtained in the latest known publications on this subject3,5,6 is not fundamentally new.
The control created turns the spacecraft about the Euler axis, although the optimization methods and control algorithms are different. At
the same time, an Euler turn is not always optimal according to the time criterion (and is optimal only in a few special cases) no matter
how precisely it is performed. The optimal turn problem has been solved completely for only two special cases, viz., a flat turn about the
principal central axis of inertia of a spacecraft4,7 and a banked turn of a spherically symmetrical body.1 The attitude control of large heavy
spacecraft has its own special features.8
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In all the numerous known publications devoted to this problem, no constraint was imposed on the angular momentum vector for
optimizing the control of the angular position of a spacecraft during a banked turn of the spacecraft. In practical applications, consideration
of the constrained nature of the angular momentum of a spacecraft is necessary in some cases (especially when the attitude of the spacecraft
is controlled using inertial actuators, i.e., control moment gyroscopes,7 and this constraint becomes significant). This paper is devoted to
finding the optimal program for the spatial reorientation of a spacecraft in the minimum time taking into account the constraint imposed
on the angular momentum. The optimal control program is synthesized by the classical method.9

1. Statement of the problem and the equations of motion

The problem of transferring a spacecraft from an initial oriented position to a position with an assigned orientation in the optimal
manner is solved. Spatial reorientation is understood to be a shift of the OXYZ axes associated with the spacecraft body from one known
angular position to another known (usually assigned) angular position in a finite time T. In this case the parameters of the turn (for
example, the components of the quaternion of the turn) are known a priori, back before the beginning of the manoeuvre; the initial angular
misalignments can take any value (from a few degrees to 180◦). The angular orientation of the OXYZ right-handed rectangular system of
coordinates (as well as its initial position OXinYinZin and final position OXfYfZf) is determined relative to the chosen system of coordinates
(the reference basis I). The most widely encountered case, in which the reference system of coordinates is an inertial system of coordinates,
is considered. It is assumed that control of the angular position of the spacecraft is achieved by means of actuators that create moments
relative to the three principal central axes of inertia of the spacecraft. The angular motion of a spacecraft as a rigid body is described by the
dynamical Euler equations10

(1.1)

where the Ji are the principal central moments of inertia of the spacecraft, Mi are the projections of the principal moments of the external
and internal forces onto the principal central axes of inertia of the spacecraft, and �i are the projections of the absolute angular velocity
vector � onto the axes of the attached basis E, formed by the principal axis of the ellipsoid of inertia of the spacecraft (i = 1, 2, 3).

We will describe the spatial motion of the spacecraft using the mathematical apparatus of quaternions (Rodrigues–Hamilton param-
eters). The motion of the attached basis E relative to the reference basis I will be specified by the quaternion �.1 To be specific, we will
assume that the basis I is inertial. In this case, the following kinematic equations hold1

(1.2)

In quaternion form, the equivalent equation is 2�̇ =� ◦ �, where �j are the components of the quaternion� (j = 0, 1, 2, 3) and �2
0 + �2

1 +
�2

2 + �2
3 = 1. Here and below (1 2 3) means that two more relations are obtained from the preceding relation by cyclic permutation of the

subscripts 1, 2, and 3.
Under the conditions of space flight, a special feature of control is the small magnitude of the perturbing moments caused by the

interaction of the spacecraft with external fields and the resistance of the medium. The motion of a spacecraft about its centre of mass is
controlled by varying the moment of the external (or internal) forces M. It is assumed that the total impulse from the perturbing moments
is negligibly small compared with the control impulse. In this case the principal moment of the forces M (the variables Mi) is determined
mainly by the control moment produced by the system of actuators.

Suppose the magnitude of the angular momentum vector of the spacecraft cannot exceed a certain value H0 during manoeuvres about
the centre of mass, i.e., the condition

(1.3)

where H0 > 0 is a specified positive value, must hold.
The boundary conditions of the control problem (the initial and final states of the spacecraft) have the following form

(1.4)

where T is the time taken for the spacecraft to complete the reorientation manoeuvre.
In order for the control problem to be closed, we will introduce an optimizable functional. In many cases (including a spacecraft with

inertial means of attitude control), an important characteristic is the duration of the turn, and the problem of turning in the minimum time
is of interest. The optimality index (the optimizable functional) has the form

(1.5)

The problem of the optimal control of a banked turn is stated as follows: it is required to transfor a spacecraft from a state corresponding to
the former condition in (1.4) to a state corresponding to the latter condition in (1.4) in accordance with Eqs. (1.1) and (1.2) in the presence
of constraint (1.3) with the condition that functional (1.5) should have its minimum value.

When a constraint of the form (1.3) is imposed on the motion of a spacecraft, the control problem stated is fairly important. The results
of its solution can be useful to developers of orientation systems for spacecraft equipped with gyroscopic mechanisms, i.e., gyrodynes.
In this case, control of a spacecraft turn is achieved by redistributing the angular momentum between the system of gyroscopes and the
spacecraft body;7 the total angular momentum of the spacecraft as a rigid body with rotating masses is equal to or close to zero. The control
of a system of gyrodynes in order to produce the programmed motion of a spacecraft by creating the necessary moments M1, M2, M3 is
a separate, independent problem (these problems are not considered here). We merely note for an assigned spacecraft turning regime to
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be realized without having to use other actuators (beside the gyrodynes), for example, rocket thrusters, the total angular momentum of
the gyro system must lie within the closed region S (it depends on the design characteristics), which determines the control possibilities
of the gyro system, over the entire control interval [0,T]. During the development, analysis, perfection, and simulation of algorithms for
the attitude control of a spacecraft with control moment gyroscopes, it is assumed that the region S of admissible angular momentum
values of the system of control moment gyroscopes is confined to a sphere. This assumption has been used by many researchers;11–17 it is
valid for a large number (if not the majority) of spacecraft (such as the Mir orbital station, the Gamma astrophysical laboratory, the Alpha
international space station and others).13–17

Since the use of control moment gyroscopes in a turning regime presumes that the total angular momentum of the gyro system would
not exceed the admissible value, a constraint, which is formalized for the angular velocity vector, is imposed on the motion of the spacecraft.
If the condition L + H ≈ 0, where L is the angular momentum of the spacecraft body, and H is the angular momentum of the system of control
moment gyroscopes, is taken into account, satisfaction of constraint (1.3) means that the evolution of the vector H of the gyro system during
the spacecraft motion will satisfy the condition that it lies within a region confined by a sphere; therefore, the turn occurs using only the
control moment gyroscopes (the vector H does not extend beyond this region without additional input to the action of the control thrusters).

2. Solution of the problem of optimal control of a spacecraft turn

We will solve the problem using Pontryagin’s maximum principle.9 The functional to be minimized (1.5) and constrain’t (1.3) do not
contain the components Mi of the moment of the forces in explicit form. Therefore, when we construct the Hamiltonian function, we will
take into account only the kinematic equations of motion (1.2), in which the variables �i are the required functions to be minimized. We
will introduce the conjugate variables �j (j = 0, 1, 2, 3), which correspond to the quaternion components �j. The Hamiltonian function of
the problem has the form

The equations for the conjugate variables �j have the form9 �j = −∂�/∂�j(j = 0,1,2,3), or in expanded form

(2.1)

After some reduction, we obtain

where

It follows from Eq. (2.1) that the set of variables �0, �1, �2 and �3 has the properties of quaternions. Henceforth we will assume that the
corresponding conjugate variables are components of the quaternion�, for which the equation 2�̇ = � ◦ � holds. Then the vector p = {p1,
p2, p3} can be written in the quaternion form p = vect(�̃ ◦� ), if p1, p2 and p3 are the projections of the vector p onto the axes of the
attached basis E. Here vect(·) denotes the operation of isolating the vector part of a quaternion,1 and �̃ is the quaternion conjugate to the
quaternion�. The Hamiltonian function takes the form �= –1 + � p/2.

We will investigate the properties of the solution of the conjugate system of Eq. (2.1). The systems of differential Eqs. (1.2) and (2.1)
are similar with respect to the coefficients �1, �2 and �3. The solutions of kinematic Eq. (1.2) for the variables �j and of Eq. (2.1) for the
variables �j differ with respect to their initial conditions, and the quaternions� and� are related to one another as follows:

where CE = const is a constant quaternion. It is still unknown and will be determined when solving the optimal control problem (after
solving the maximum principle boundary-value problem). A necessary and sufficient condition for the system of equations consisting of
Eqs. (1.2) and (2.1) to be non-degenerate is vect CE /= 0. In the opposite case of �0: �0 = �1: �1 = �2: �2 = �3: �3, Eqs. (1.2) and (2.1) will
not be independent (in the sense that only four of the eight equations will be independent), p = 0, and the solution of the problem will be
meaningless. Therefore, to determine the optimal control, the quaternions � and � are assumed not to be identical (the functions �j are
not proportional to the variables �j), and only the version p /= 0 is considered.

Differentiating the expressions for pi (i = 1, 2, 3) and substituting the expressions for �j and �j (j = 0, 1, 2, 3) into them, we obtain the
following system of equations for the time functions pi

(2.2)

or, in vector form,

(2.3)

Eq. (2.3) reflects the rotation of the vector p with angular velocity –� about the attached basis E. In turn, the attached basis E performs
angular motion about the reference basis I with angular velocity �. As a result, the vector p is fixed in the reference system. By virtue of
the fact that |p| = const, we will assume below that the vector p is normalized: |p| = 1.

Thus, the problem of determining the optimal control reduces to solving system of Eqs. (1.1), (1.2) and (2.2) under the condition that the
control itself is selected on the basis of the requirement for maximizing the Hamiltonian function. The boundary conditions with respect to
the angular positions�in and�f specify a family of solutions of p(t), which has the form1 p = �̃ ◦ cE ◦�, where cE =�in ◦ p(0) ◦ �̃in = const.
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According to its physical meaning, cE = vectCE = vect(� ◦ �̃), while the components of the vector cE are projections of the vector p onto
the axes of the inertial system of coordinates.

The direction of the vector cE depends on the initial and final angular positions of the spacecraft. In order for the spacecraft to have
the required orientation at the right-hand end �(T) =�f, the vector cE (or the value of the vector p at the initial point in time) must be
determined from the solutions of system (1.2). The problem of finding the optimal control consists of investigating the dynamical Euler
Eq. (1.1), the kinematic equations of motion (1.2) and the conjugate Eq. (2.2) for the motion of the vector p indicated. Differential Eq.
(2.2), together with the requirement for maximizing the Hamiltonian function �, are necessary conditions of optimality. The value of�(0)
(and, accordingly, p(0)) is selected such that the maximum principle boundary-value problem has a solution. The coupling equations are
expressed by system of Eq. (1.2) with simultaneous satisfaction of constraint (1.3) on the motion of the spacecraft. The boundary conditions
�in and�f and the conditions for a maximum of the function � determine the optimum solution for �(t),�(t) and p(t).

We will find the necessary conditions of optimality in the form of a functional dependence of the control variables on the phase
coordinates and conjugate variables. The control functions are the projections �i of the angular velocity vector � onto the axis of the
attached basis E. The necessary condition of optimality has the form

To obtain equations that define the optimal solution, we make a replacement of variables. We introduce the notation Li = Ji�i and �i = pi/Ji
(i = 1, 2, 3). We then have

To maximize the function �, the requirement |�| → max must be satisfied at each point in time (the angle between the vectors � and p
is acute) with simultaneous satisfaction of condition (1.3) (i.e., the condition that the vector � is in the region of admissible values of�).
Therefore, the equality

(2.4)

holds when the rotation of the spacecraft is optimal. The function � clearly takes a maximum value under the condition L2
1 + L2

2 + L2
3 = H2

0 ,
when the vectors L = {L1, L2, L3} and � = {�1, �2, �3} have the same direction. The relations

(2.5)

then hold. Hence we have pi = qj2i ωi, where q > 0 is a scalar quantity. It can be shown that q = const.
For this purpose, we test the equality p2

1/j
2
1 + p2

2/j
2
2 + p2

3/j
2
3 = const. We take the derivative of the left-hand side of this equality with

respect to time and replace the derivatives of the components pi of the vector p according to relations (2.2); in the expression obtained the
components �i of the vector � are replaced according to the formulae presented above that relate the pi and �i (or Li). In fact,

from which the validity of the statement regarding the constancy of the coefficient q follows.
The optimal motion of the spacecraft is completely specified by the system consisting of differential Eq. (2.2) and the equations

(2.6)

when the initial condition

(2.7)

and the boundary condition

(2.8)

are ensured for the solution�(t) of system (1.2).
The calculated values of the control moments Mi can be determined from the condition that the spacecraft moves along an assigned

kinematic trajectory by solving the inverse dynamical problem. Substituting expressions (2.6) into system of Eq. (2.2), we obtain

or, in vector form, (j�̇ = −j−1(� × (j2�)), whence we have

(2.9)

where J = diag (J1, J2, J3) is the inertia tensor of the spacecraft, and the vectors p and � are the solution of system of Eqs. (2.2) and (2.6).
The optimal turn of a spacecraft in the minimum time occurs with the maximum admissible angular momentum. The problem of

synthesizing the optimal control reduces to finding the law of variation of the vector p(t) for which boundary condition (2.8) is satisfied as
a result of the motion of the spacecraft according to system of Eqs. (1.2), (2.2) and (2.6) with initial condition (2.7).
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The main problem involves finding a value of the vector p(0) such that equality (2.8) is satisfied as a result of the motion of the spacecraft
in accordance with Eqs. (1.1), (1.2), (2.2) and (2.6). It is practically impossible to construct the general solution of this system of equations.
The difficulty lies in determining the boundary conditions p(0) and p(T), which are related by the expression

where�t = �̃in ◦�f is the quaternion of the turn.
System of Eqs. (1.2), (2.2) and (2.6) has an analytical solution in elementary functions only for dynamically symmetrical and dynamically

spherical bodies. A similarly formulated optimal control problem for a spherical body was examined in detail in Ref. 1. For a dynamically
symmetrical body with J1 /= J2 = J3, the solution p(t) can be found in analytical form. The optimal function p(t) is written in the following
manner

(2.10)

where

(� is the intrinsic rotation rate).
The specific value p0 is determined exclusively so that as a result of rotation of the spacecraft according to Eqs. (2.2) and (2.6) with the

initial conditions

the solution of Eqs. (1.2) with initial conditions (2.7) satisfies equality (2.8). The solution of system of Eqs. (2.2) and (2.6) is found in the
form of regular precession10 (conical precessing motion). The programmed values of the projections of the vector of the angular velocity
�(t) onto the attached axes will be the following

(2.11)

where ϑ is the angle between the longitudinal axis of the spacecraft and the vector p, �̇ is the angular intrinsic rotation rate (about the
longitudinal axis), and �̇ is the angular precession rate (about the vector p).

The optimality conditions for the parameters ϑ, �̇ and �̇ take the form

In the case of a spacecraft with dynamical symmetry (J2 = J3), relations (2.10) together with equalities (2.11) form a solution of system
of Eqs. (1.2), (2.2) and (2.6) under condition (2.4). The vector p describes a cone about the longitudinal OX axis in the attached system
of coordinates. Under such a control, an axisymmetrical body moves along a “conical trajectory” (Ref. 10). The spacecraft is transferred
from the angular position �in to the angular position �f by simultaneously rotating it about the vector cE, which is fixed relative to the
inertial basis I, through the angle � and about its longitudinal axis through the angle �. Using the mathematical apparatus of quaternions
to describe the rotations of a rigid body about its centre of mass, we obtain the relation

where e1 is the unit vector along the longitudinal axis of the spacecraft.
The dependence of the parameters b0, � and � on the limiting angular positions�in and�f is specified by the system of equations

(2.12)

where �0, �1, �2 and �3 are the components of the quaternion of the turn�t = �̃in ◦�f , � is the angle of rotation of the spacecraft about
the longitudinal axis, and � is the angle of rotation about the vector p. Here it is assumed that |�| ≤ 	 and 0 ≤ � ≤ 	.

In essence, the optimization was reduced to determining the characteristic ϑ (or p10 = cos ϑ), while the angles of rotation � and � are
calculated uniquely from system (2.12). The optimality conditions will be obeyed if it is required that

The optimum values of the angles �, � and ϑ that satisfy the assigned limiting values�in and�f in accordance with equalities (2.12) can
be determined using the previously proposed system.18 The turn time is estimated by the quantity
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The calculated angular precession and intrinsic rotation rates are:

Thus, the kinematic problem of the reorientation of a spacecraft (as a rigid body) has been completely solved. Optimal control of the angular
position of a spacecraft is realized using the previously proposed method.19

For an arbitrary spacecraft (J1 /= J2 /= J3), the solution of system of Eqs. (1.2), (2.2) and (2.6) is found by numerical methods (for example,
by the method of successive approximations). The vector p0 is determined by solving the boundary-value problem with conditions (2.7)
and (2.8), taking with account relations (1.2), (2.2) and (2.6), which are imposed on the motion.

The quaternions�in and�f, which assign the orientation of the axes attached to the spacecraft at the initial and final times have arbitrary
pre-assigned values. Of course, at the times t = 0 and t = T the angular velocities for the nominal spacecraft rotation program specified by
Eqs. (2.6) are not equal to zero. Therefore, the following transitional phases are unavoidable: start up, i.e., a transition from a state of rest (in
which � = 0) to a rotation regime with an angular momentum that has the maximum value H0, and stopping, i.e., reduction of the angular
momentum of the spacecraft to zero. If the initial (�in) and final (�f) angular positions and the value of H0 are such that the start up and
stopping times are negligibly small (compared to the time T of the entire turn), the imparting of the necessary angular momentum H0 to
the spacecraft and the reduction of the existing angular momentum to zero can be considered to be almost instantaneous. In this case, the
phase between start up and stopping, during which condition (1.3) changes to a strict equality, is the main phase. The necessary conditions
of optimality for the phase of rotation of the spacecraft with a constant value of the angular momentum take the form of (2.2) and (2.6). The
control moments Mi needed to maintain the optimum motion regime are found from the dynamical Euler Eq. (1.1) (for known forms of the
functions �i(t)). The value of the vector p at the time t = 0 is a decisive factor for finding the optimal solutions p(t) and �(t). After solving
the kinematic problem of turning a spacecraft from the angular position �(0) =�in to the angular position �f, taking Eqs. (1.2) and (2.2)
into account, in which relation (2.6) holds, we find the calculated value of the vector p0 and the vector cE = const that corresponds to it. In
the phase of rotation of the spacecraft with a constant magnitude of the angular momentum specified by condition (2.4), the mathematical
expression for the moment M takes the form (2.9) (due to the existence of Eqs. (2.2) and equalities (2.6), which are obeyed by the functions
�i(t)).

In numerous cases, the actuators of a spacecraft orientation system are control moment gyroscopes (CMGs). Their use in a turning regime
requires that the total angular momentum H of the gyro system does not exceed the admissible value. Control by moment gyroscopes (by
a system of gyrodynes) that create a moment M for producing the required programmed motion of the spacecraft about the centre of mass
(in accordance with Eqs. (1.1)) is a separate independent problem. These questions, as well as questions concerning the accuracy of the
determination of the optimal moment M, allowing for the dynamics of the control gyroscopes, are not considered here. In general, the region
S of possible values of the angular momentum of a system of CMGs, intended for attitude control of a spacecraft, is confined to a sphere of
radius Had with its centre at the origin of the attached system of coordinates Oxyz, where Had > 0 is the maximum admissible magnitude
(absolute value) of the total angular momentum of the system of CMG actuators. “Saturation” of the system of CMGs, i.e., achievement of
the boundary of the region S of possible values by the angular momentum of the CMGs, sets in at the time when the equality |H| = Had is
satisfied. Further attitude control using some CMGs is impossible, and “unloading” of the CMG system,7 i.e., the elimination of the angular
momentum of the CMGs by applying a moment of forces of a different nature, such as magnetic forces,2 including orientation thrusters,
etc. For small Gamma spacecraft a control for performing turns is constructed only using CMGs in the overwhelming majority of cases.14

In order that a spacecraft turn manoeuvre should occur over the entire time interval 0 ≤ t ≤ T without the need for “unloading” the CMGs,
satisfaction of the condition |L| ≤ H0 is required, where H0 is an assigned constant quantity that satisfies the inequality 0 < H0 < Had. Such
spacecraft motions are considered to be admissible (in the sense of controlling the attitude of the spacecraft without “unloading” the
CMGs). The difference Had − H0 (storage of angular momentum of a certain kind) is necessary for the guaranteed absence of the angular
momentum of the CMG system outside the region S of possible values even under the action of various perturbing moments. Hence, the
presence of constraint (1.3) in the statement of the optimal control problem, as well as the applied value of the solution obtained for use
in spacecraft with an orientation system based on control moment gyroscopes, become understandable.

3. Results of mathematical modelling

The purpose of the mathematical syntheses presented above is to obtain an answer to the question of what should the motion of
a spacecraft about its centre of mass be in order for, first, rotation of the spacecraft from the known angular position �in to bring the
spacecraft into the assigned final angular position �f, second, for constraint (1.3) to be satisfied during the manoeuvre, and, third, for
the time T needed to achieve the required attitude �f to be a minimum. For a dynamically symmetrical spacecraft, the problem of an
optimal turn is completely solved in formulation (1.1)–(1.5). We now present a numerical solution of the problem of the optimal control
of a programmed turn of a spacecraft in the minimum time with a constrained magnitude of the angular momentum. As an example, we
will examine the banked turn of a certain spacecraft with the following moments of inertia

From the initial angular position�in, which is identical to the axes of the reference basis I, to the assigned final angular position�f =�pr.
The values of the elements of the quaternion�pr that assign the required angular position of the spacecraft after the turn were as follows:

The turn quaternion �t adopted corresponds to a version in which the final rotation vector2 (the Euler axis) makes the same angle with
the OX axis and with the plane perpendicular to this axis, i.e., reflects the apparently most difficult case of reorientation of a rigid body that
does not have spherical symmetry.

The maximum principle boundary-value problem, i.e., the determination of the vector p0 for optimal motion, can be solved by the method
of successive approximations. The solution of the analogous optimal control problem for a dynamically symmetrical body with moment of
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inertia J1 about the longitudinal axis and moment of inertia Jtr = (J2 + J3)/2 about the transverse axis is taken as the initial approximation. The
solution for the initial approximation p(0)

0 is found from system of Eq. (2.12) with minimization of the quantity J21(� + �p10)2 + J2tr�2(1 − p2
10).

The time-optimal motion has the form of a precession of the rigid body about an axis, fixed in the inertial system of coordinates. Therefore,

We recall that for a first approximation �̇ = �/T , and �̇ = �/T . Multiplying the left- and right-hand sides by T2, we obtain

We start from the fact that H0 = const. The condition T → min will hold if we require

Next, the vector p0 is refined by modelling the motion in accordance with Eqs. (1.2), (2.2) and (2.6). First, system of Eqs. (1.2), (2.2) and (2.6)
is integrated with the initial conditions

(3.1)

The estimate ε =
3∑

j=0

�j(t)�jf is calculated at each integration step. At the time T, when the value of 
 is a maximum, the parameters�(T)

are recorded and stored:�mod =�(T), and�mod is the expected (predicted) angular position to which the spacecraft transfers if the value
of the vector p0 is not altered. The aim of the process of approximating the vector p0 to the solution sought is to reduce the discrepancies
�jf − �jmod to zero. To correct the vector p0, we introduce the function

The optimum (sought) value of the vector p0 corresponds to the minimum of the function F. The objective function F is minimized with
respect to the argument p0 by the gradient method20 (or the method of steepest descents). Taking into account that |p0| = 1, we can
conveniently change to the coordinates ϑ = arccos p10 and � = arctan(p20/p30). In spherical coordinates

(3.2)

By varying the values of the variables ϑ and �, we obtain the variation of the function F (in terms of the solution of system of Eqs. (1.2),
(2.2) and (2.6), in which the initial conditions are specified by expressions (3.2) and (2.6), which relate �i(0) and pi0, and the definition of
�mod). The system of Eqs. (1.2), (2.2) and (2.6) is intergrated and�mod is determined at each approximation step and for each correction of
the parameters ϑ and � (and, accordingly, of the vector p0). For the kth approximation of ϑ(k), �(k) (and thus p0

(k)), we find the modelled
angular position�(k)

mod and the value of the minimized function F. The iteration process is stopped when F < Fad, where Fad is a positive value
(the tolerance) close to zero. Note that the value of Fad determines the accuracy of the solution of the boundary-value problem�(0) =�in,
�(T) =�f with respect to the angular position at the right-hand end. In fact, the turn accuracy � is related to the function F by the
expression

whence we have� < 4 arcsin(
√
Fad/2). We choose the acceptable bound Fad in accordance with this inequality.

An analysis of system of Eq. (2.12) shows that the component p10 cannot exceed the range |p10| ≤ �, where � =
√
�2

0 + �2
1. The first two

equations in system (2.12) lead to the equality

from which we obtain an expression for p10, where max |p10| = �.
The search strategy used to find the minimum of the function j21(� + �p10)2 + J2tr�2(1 − p2

10) in the interval [−�, �] can be different
(Fibonacci’s method,20 the method of dividing the interval in half etc.). The golden section method20 turns out to be the best. After specifying
the solution accuracyp10 equal to 10−7, we obtain the required value p(0)

0 already at the nth iteration, where n ≥ (7 + 1g�)/(1g(
√

5 + 1) −
1g2) + 1. The minimum is usually found at the point for which sign p10 = sign(�0�1).

The function F(ϑ, �) is a convex function (in Vasil’ev’s terminology).20 Using the notation u = (ϑ, �)T for the vector of the argument and
grad F = (Fϑ , F�)T for the gradient of the function F(ϑ, �), we write the fundamental rule of the gradient method: u(k+1) = u(k) −  grad F,
where  > 0. Using the property min F(ϑ, �) = 0, we adopt the following scheme for generating the sequence of approximations (ϑ(k), �(k))
(the minimizing sequence)20
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or in expanded form

The value of  was selected using the conditionϑFϑ +ϑF� = − F, and it was, therefore, assumed that  = F(ϑ, �)/grad2 F.
In determining the partial derivatives Fϑ and F� (for calculating the gradient of F(ϑ, �)), the increments of the independent variables ϑ

and � were assumed to be of the order of 5 × 10−4. . .10−3. The accuracy threshold Fad was set at a level of 2 × 10−7, which corresponds to
an attitude error � no greater than 3 min. The convergence of the approximation process to a minimum of the function F is due to the
proximity of the initial approximation p(0)

0 to the true extremum of F. Even for the case of a 180-degree turn, the deviation�p = |p(0)
0 − p∗

0|

Fig. 1.
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Fig. 2.

does not exceed 2.20 × 10−2, where p(0)
0 is the initial approximation and p∗

0 is the true value of p0 at which F = 0 (i.e., F(p∗
0) = 0), and

F(0) = 6.47 × 10−3.
Thus, the procedure for calculating the required vector p0, which specifies the initial data p(0) and �(0) of the optimum motion (the

initial data�(0) do not vary; they are known and equal to�in), consists of two successive steps, viz., finding the initial approximation p(0)
0

by the procedure for finding the minimum of the function of the single variable p10 (the angles � and � and the value of the minimized
function J21(� + �p10)2 + J2tr�2(1 − p2

10) are found from the solution of system (2.12) when the value of p10 is known), and refinement of the
vector p0 by minimizing the discrepancy function F as a function of the two variables, ϑ and �, by one of the known numerical methods.20

The value of the discrepancy function F for a specific value of p0 is determined by integrating system of Eqs. (1.2), (2.2) and (2.6) with the
initial conditions (3.1) (by modelling the motion of the spacecraft) and obtaining the predicted angular position�mod.

As a result of solving the kinematic orientation problem of transferring an asymmetrical spacecraft from the angular position�(0) =�in
to the angular position�(T) =�f (the optimum turn problem in a momentum formulation), we obtained the calculated value of the vector
p0 = {0.344, −0.030, 0.939} and the equality cE = p0 (since�in = {1, 0, 0, 0}). The maximum admissible value of the angular momentum of
the spacecraft was assumed to be equal to H0 = 250 N m s. The required accuracy is achieved at the fifth step of approximating the vector
p0 to the solution required.

The results of the mathematical modelling of the dynamics of the motion of a spacecraft under line-optimal control are presented in
Fig. 1. The upper part of this figure shows graphs of the variation of the angular velocities in the system of coordinates �1(t), �2(t), �3(t)
attached to the spacecraft in time. The entire turn is completed in a time T = 214 s. As a result, the spacecraft was turned by 150◦. The middle
part of Fig. 1 presents the dynamics of the variation of the conjugate variables p1(t), p2(t) and p3(t). Finally, the lower part of Fig. 1 shows
graphs of the variation of the components of the quaternion�(t), which specifies the current attitude of the spacecraft during the rotation
manoeuvre: �0(t), �1(t), �2(t) and �3(t). The variables �j and pi are smooth functions of time. The far smaller variation of the projection
p1 compared to the variation of p2 and p3 is characteristic. The angular velocity component �1 also varies less than �2 and �3 do in the
nominal rotation phase (in the time interval in which the angular momentum has a constant value). This confirms that the OX axis is the
longitudinal axis. The following rule is observed for the functions �1(t) and p1(t): for any combinations of the limiting values of �in and
�f, these functions are always sign-invariant and of the same sign.

The size of the decrease in the turn time T compared with the corresponding size for known spacecraft attitude control methods is of
interest. The investigation was performed by mathematically modelling of a large number of turns. The efficiency of the control algorithm
developed is estimated by the relative reduction of the turn time

where Topt is the turn time in the case of optimal control and TEul is the turn time in the case of rotation of the spacecraft about the Euler
axis.

The results of the numerical experiments are presented in Fig. 2 in the form of a graph of �T against the turning conditions (the angle
� between the final rotation vector and the longitudinal axis of the spacecraft). It can be seen that the time saving is a maximum in the
vicinity of the point � = 	/4.

4. Conclusion

The maximum principle, which is the most thoroughly developed and effective method for solving optimal control problems with
constrained control variables, has enabled us to find the necessary conditions of optimality for a spacecraft reorientation regime. The spatial
motion of a spacecraft about its centre of mass is described by quaternion variables, which greatly simplify the calculation procedures and
significantly reduce the computational cost of the control algorithm, making it more convenient for vehicle-borne implementation. The
optimality conditions have been written in analytical form (in the form of a system of equations). It has been shown that the optimal
solution belongs to a class of regular motions that are close to the precession of a rigid body about a certain axis fixed in inertial space. In
the general case (a turn from a state of rest to a state of rest), a spacecraft reorientation manoeuvre can be divided into three characteristic
phases: start up (almost instantaneous imparting of angular velocity) to the maximum admissible angular momentum, rotation with the
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maximum magnitude of the angular momentum and almost instantaneous reduction of the angular velocity to zero. During start up and
stopping, the control moment has the maximum possible value. In the phase between start up and stopping, rotation of the spacecraft
occurs with a constant (maximum admissible) value of the angular momentum, and the control moment is determined from the condition
that the motion of the spacecraft about its centre of mass should strictly follow the assigned rotation trajectory specified by the calculated
turn vector. The structure of the synthesized control is comparatively simple, and it can easily be implemented by vehicle-borne spacecraft
motion control systems. The key parameters of the control functions that determine the optimality of the motion, according to the criterion
selected, are calculated by the system described in Ref. 21 The algorithm developed for controlling spatial spacecraft reorientation enables
us to apply this method in practice, since the moments of inertia of real spacecraft are similar to those of bodies with axial symmetry.
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